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The Fokker-Planck equation for a heavy particle in a dilute gas of light 
particles is derived from a Boltzmann equation. Inelastic collisions between 
the heavy and light particles are considered, and explicit quadratures for 
the frictional coefficients are given in terms of the scattering kernels. It is 
shown that the general formulation reduces properly to known results in 
the cases of pure elastic and pure diffuse scattering, respectively. 
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1. I N T R O D U C T I O N  

This paper  considers  the p rob lem of  de te rmin ing  the kinetic equa t ion  for  a 
heavy part ic le  immersed  in a med ium that  is a di lute  gas. The t empera tu re  o f  
the par t ic le  may differ f rom tha t  o f  the ambien t  gas. This quest ion has obvious  
interest  with respect  to the behavior  of  par t icu la te  mat te r  in the a tmosphere .  

The p rob lem has a l ready  been t rea ted  by Slinn et aL ~1'2) f rom the po in t  
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of view of a stochastic analysis of the random impacts of the gas molecules 
on the heavy particle (henceforth B-particle or Brownian particle). The 
model was that of a spherical B-particle, a fraction c~ of whose collisions with 
gas particles were elastic, and a fraction 1 - ~ perfectly diffuse. We intend 
to treat the problem from the point of view of the Boltzmann equation. Our 
purpose is not to rederive a known result (though, of course, that is a by- 
product), but to permit situations of more general particle shape, and more 
general collision laws, to be treated. An analysis of the case where the am- 
bient medium is dense is presented elsewhere. ~3~ 

The present problem is clearly a case of Brownian motion. The derivation 
of the Fokker-Planck equation from the Boltzmann equation for a B-particle 
with no internal structure (elastic collisions) was first given by Wang Chang 
and Uhlenbeck, ~ but existed only in the form of an unpublished report until 
recently. Many years ago the present author derived it independently, but 
never published the derivation (only mentioning it in passing ~5~) because he 
had heard of, but not seen, the Wang Chang-Uhlenbeck report. More 
recently, Montgomery has published a derivation, ~6~ the final results of 
which are restricted to a hard sphere interaction. An exposition is also given 
by Harris. ~7~ The aim of this paper is to generalize the derivation of a 
Fokker-Planck equation from the Boltzmann equation to the case of a 
general inelastic scattering law. 

In order to avoid possible confusion, let us emphasize the following 
points. If inelastic collisions take place, there must be internal degrees of 
freedom in the colliding particles. These will describe overall rotations of the 
particles as well as their internal vibrations. However, we shall consider here 
only the translational motion. The distribution functions introduced in 
Section 2 are one-body translational distribution functions. Of course, these 
are affected by the existence of the internal degrees of freedom, and this must 
be accounted for in the structure of the relevant Boltzmann equation. In the 
development presented here, the effects of the internal degrees of freedom 
are supposed incorporated into the collision kernels, or scattering laws, W, 
introduced in Section 2. 

A Brownian particle is itself a rather complicated many-body system 
A basic premise of the theory is that the mass of the Brownian particle is 
much greater than the mass of the particles of the medium. Since common 
atoms have more or less similar masses, within a factor ten or so, this implies 
that the Brownian particle must contain very many atoms, all strongly 
interacting to hold the particle together. This being the case, it is not possible 
to treat the internal degrees of freedom dynamically in any practical way. 
Rather, we shall describe inelastic collisions by a scattering function giving 
the probability of a given momentum transfer on collision, without specifying 
which internal degrees of freedom actually participate in the transfer. 
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This scattering law may well be, and in most cases probably will be, 
phenomenological in nature, and be based on the models used in boundary 
value problems in the kinetic theory of gases. In this latter theory, the 
boundary condition on the distribution function of a gas at a surface is 
specified in terms of a linear operator transforming the distribution function 
of incoming gas particles into that for outgoing particles. Since our Brownian 
particle is a large (compared to gas molecules), solid object, we feel justified 
in applying this model in the present case. From the point of view of prac- 
ticality, this subterfuge is actually an advantage, since current dynamical 
knowledge of gas-surface interactions is so meagre that phenomenological 
descriptions are all we really have to work with. 

A referee of an earlier version of this paper has drawn attention to a 
series of papers by Williams/8~ These papers consider a variety of problems 
concerning the motion of small spheres in gases; they go a great deal further, 
in most respects, than does the present paper. However, Williams does not 
consider the Fokker-Planck equation. The work here reported, though done 
in ignorance of Ref. 8, could thus be considered as supplementary to that 
of Williams. 

In the cases to be considered here, we shall assume that the B-particle 
is being pumped by some external energy source, e.g., light, and that the 
absorbed energy is rapidly distributed among the internal degrees of freedom 
These degrees of freedom thus constitute a heat bath at temperature T~, only 
negligibly perturbed by collisions with ambient gas molecules. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Our system is a collection of particles of mass m (medium, or m-particles) 
with number density nm, and particles of mass M (B-particles) with number 
density nB. We require that 

M >> m; nm >> nB (1) 

The one-body distribution function of the m-particles will be called ~, that 
of the B-particles, f.  These functions are assumed to satisfy the coupled 
Boltzmann equations 

Dq~_ ab 
Dt - at + v'Vg~ + FI"Vv~ - nmY~m(d~' d?) + nBSm~(dp,f) (2a) rn 

D f  _ Of + c. V f  + F2 Ve f = nmJBm(f, (~) + n~JB3(f , f )  (2b) 
- ~ =  at Yt" 

The velocity of the m-particles is denoted by v, that of the B-particles by e. 
Here F~ and F2 are the external forces on the m- and B-particles, respectively. 



430 Robert M. Mazo 

The J 's  are the collision operators, to be specified below. Equations (2a) 
and (2b) are the starting equations of our development; we do not attempt 
to justify them from more basic hypotheses. 

We shall consider the situation where n~ << nm, i.e., the B-particles are 
very dilute. Thus we will neglect the second terms on the right-hand sides of 
Eq. (2a) and (2b). Clearly, then, if we were to solve (2a), we would not get 
the correct m-particle distribution function for those m-particles leaving 
collisions with a B-particle. But our main interest is in (2b), and, as we shall 
see, all we need there is the m-particle distribution function for m-particles 
entering collisions with the B-particle. So we restrict our attention to JBm. 

We write 

JBm(f, ~) = - f W(e', v'lc, v)f(e)~b-(v) de' dv 

+ f W(e, vie', v')f(c')~b-(v') dc' dr '  (3) 

~-  is the distribution function of m-particles entering collisions with a 
B-particle. The W notation, which is very convenient for our problem, is 
due to Waldmann. (9~ We shall assume that, aside from a term expressing 
momentum conservation, the transition kernel W depends only on the 
relative velocities g and g' before and after collision, respectively, 

g = v - e, g' = v' - e' (4) 

So, setting V = (M + m ) - l ( M e  + my), the center-of-mass velocity, we 
obtain 

m(c', v'lc, v) = w(g'lg) 3(V - V') (5) 

The delta function in (5) arises from conservation of momentum in 
collisions, even inelastic ones. This is an expression of Galilean invariance. 

Waldmann has shown that the ordinary Bohzmann collision term can 
be written in the form (3). The main difference between his case and ours is 
that we consider inelastic collisions, with a consequent loss of symmetry 
properties of W. 

3. THE F O K K E R - P L A N C K  E Q U A T I O N  

The transition from the Boltzmann equation to the Fokker-Planck 
equation is effected by recognizing that, because ~,2 = m/M << 1 (by hy- 
pothesis), on the average the velocity of the B-particle is much less than the 
velocity of an m-particle, c = O(~,v). Furthermore, the velocity change on 
collision e ' - e  is very small. In fact, by conservation of momentum, 
c '  - c = ~ , 2 ( v '  - v ) .  
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Therefore we expand f(e ' )  about f(e) :  

f (e ' )  = f(c)  + (e' - e).Vcf(e) 

+ l(e '  - c)(e' - c): VcVcf + O[(c' - e) 3] (6) 

Let us note that, because of the delta function in (5), we may write both 
integrals in (3) as integrals over e', v', and v. So, inserting (6) in (3) and using 
(2b), we obtain 

D f =  ~([w(g,g ' )r  - w(g'lg)r ~(V- V')dv dv' de ' ; f ( c )  
Dt ( J  ) 

+. . .  (7) 

The terms indicated by ellipses are of  higher order than those exhibited, and 
will be neglected. Our object now is to simplify the three terms on the right- 
hand side of (7). 

Let us first investigate the first term, a scalar, evaluating it to order 72. 
To do this, we change variables to g, g', V', noting that 

dv dv' de'  = dg dg' dV' (8) 

Furthermore,  we expand 

r  (v) = r - (g) + c .  v g r  (g) + . . .  (9) 

and similarly for 4'-(v'). Thus the first term on the right-hand side of (7) 
becomes 

f ~ ( v  - - w(g'[g)r dg V') d r '  [w(g]g')r -(g') dg'  

+ t" 8(V - V') dV' [w(glg')c'.Vg4-(g' ) - w(g'lg)e.Vor dg dg'  
J (10) 

The first term of  (10) vanishes by symmetry, g' and g being dummy variables 
of integration. The second term may be written, after some manipulation, as 

f s (v  V') w(gjg')(c' - c).Vg,r dg dg' (11) dV' 

Now 

e' - e = [72/(1 + y2)](g _ g,) x ~,2(g _ g,) (12) 
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So, to order 7 2, the coefficient off(c)  in (7) is given by 

y2f 8(V - V') dV' w(glg')(g - g').Vg,r dg dg' (13) 

We now go on to the second term on the right of (7), the vector term. 
Using (9) and (12) this term becomes 

y~f 8(V - V')dV' w(glg')(g - g ' )6-(g ' )dg dg' 

+ y2[~ 8 ( V -  V')dV'  w(glg ' ) (g-  g').Vg,r dg ' [ . c  + 0(7 ~) 
k O  J (14) 

The first term of (14), which is independent of c, is just m-1 times the negative 
of the mean momentum transferred to a stationary B-particle by collisions 
with the m-particles. Thus we write this term as -y~(F>/m =- -(F>/M. It 
vanishes if r  r the collisions are elastic, and w(g]g')= 
w(g'[g) (existence of inverse collisions), but not in general. 

The last term in (7), the tensor term, is already of order 7 4, so we may 
approximate r by r in it. After these computations, we can write 
down the Fokker-Planck equation for the B-particle 

~-Tft + c . V f +  (F>) .Vcf=  BU+ (B.c)-Vcf+ D: VcVcf (15) 
(V2 + 

M 

where 

= - f 8(V - V') dV' w(g[g')(g - g')r dg dg' (16a) <F>/M 

B = y 2 f 8(V - V') dV' w(glg')(g - g')Vg,r (g') dg dg' (16b) 

= xy~ f 8(V - V') d r '  w(g[g')(g - g')(g - g')r (g') dg D dg' (1 6c) 

B = TrB 

Let us note that, in fact, the V' integration can be carried out at this stage, 
and just yields unity. Equation (15) is the Fokker-Planck equation we have 
been seeking. 

4, SPECIAL CASES 

Since the coefficients defined by Eq. (16a)-(16c) look rather abstract, 
it will be useful, both for didactic purposes and for purposes of checking, to 
show that (15) reduces to the proper form in the two special cases for which 
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the result is already known. These are (1) elastic collisions with spherically 
symmetric potentials, (~'6~ and (2) purely diffuse collisions. C1~ We take these 
in turn, giving only the outlines of the computation. The details are quite 
tedious. 

4.1. Elastic Collisions wi th  Spherically Symmetr ic  Potentials 

This is the case of the ordinary Boltzmann equation. For this case, 
Waldmann (9~ has shown that 

t __2 g,2) (17) w(glg' ) = ~(0, g') ~\g2 

where 0 = cos-Z(g.g'/g2), the angle of scattering, cr is the differential cross 
section. For this case 

w(glg' ) = w(g'lg) (18) 

If we let qS- be the Maxwellian distribution (which we must if we are to 
compare with the known cases) 

6 -  (g) = (m/2rrkT) a2 e x p ( -  mg2/2kT) (19) 

then one can easily show, using the symmetry of w, that 

B = M D / k T  (20) 

Thus it is sufficient to evaluate D. 
We have done this as follows. Write the g and g' integrals in polar 

coordinates, using the g direction as the polar axis for g'. First integrate over 
the magnitude of g', using the delta function in w. Then do the angular 
integrations over the direction of g'. The computation is rather long, though 
each step is elementary, and the final result is 

D = O l  (21) 

D = 7~(8~2/3)(m/2,~kT) 3j2 g'~ e x p ( - m g 2 / 2 k T )  rig' 

x e(0, g')(1 - cos 0) sin 0 dO (22) 

which is the known result/~ 

4.2. Purely Diffuse Scatter ing 

Purely diffuse scattering refers to the case where the particles Ieaving a 
collision have a Maxwellian velocity distribution appropriate to the tem- 
perature of the B-particle TB (which may be different from the ambient gas 
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temperature T) independently of  their initial relative velocity g. For this 
case we take 

(1/2rr)(m/kTB)2 f g.n exp(-mg2/2kT)g'b db dE (23) w(g[g') 

where n is the unit outward normal to a surface element of  the B-particle, 
assumed spherical for our example. The integration region is restricted by 
g.n > 0, g ' . n  < 0. Here b is the impact parameter of  the impinging particle, 
and �9 is the associated polar angle. For the justification of this form for w, 
see Ferziger and Kapper (~~ (especially p. 348ff). 

Again, we take q~- to be a Maxwellian at temperature T [Eq. (19)]. Let 
us outline the computation of D. First we integrate over g, using polar 
coordinates with n as the polar axis, remembering that g.n > 0. Then we do 
the b db de integral using g' as the polar axis. I f  a is the radius of the spherical 
B-particle and X = cos-Z(n.g' /g ') ,  then 

b = a s i n x ,  bdb = a  2s inxcosXdx  (24) 

Finally, we integrate over g. Although we omit all details, we thought it 
worthwhile to indicate the order of  integration that we found most con- 
venient. The final result is 

4rr m kT  {8kr~'/2a2[1 1 r.   (rq.,q 
D - 3 M M ~-~-m--m I [2 + 2-T- + g~-T-] ] 1 (25) 

Equation (25) agrees with the result of  Slinn et al. (1~ if we put c~ = 0 ( f  = 1 
in their notation; pure diffuse scattering). 

In the diffuse case, we do not have the simple relationship between D 
and B given by Eq. (20), so B must be evaluated separately. The technique 
is exactly the same as for D, and we get 

= 4~__ __m [~ [ ~_[TB] I/z] B _SkT_l/2a~ 1 + 1 (26) 
3 M \zrm I 8 \ T ]  

again in agreement with Ref. 1 for the case - = 0. I f  one assumes, as is 
usual, that the elastic and diffuse w's are additive, with coefficients ~ and 
1 - c~, respectively, then the agreement with Ref. 1 is complete. 

Thus our result properly reduces to the two known special cases. 
As an additional example, we have computed D for the case of  a particle 

in the shape of a thin, flat plate of  arbitrary shape. This example is not 
completely academic, for one might expect such substances as graphite or 
mica to form plat�9 on fragmentation. For fixed orientation of the plate, 
D is obviously highly anisotropic, but we are compelled to average over all 
orientations, since our starting point, Eq. (2), refers to translational motion 
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only, orientations having been already averaged. For the two scattering laws 
considered above, it turns out that the result is precisely that for a spherical 
particle of the same total area as that of the plate. The calculation neglects 
collisions with the narrow surfaces of the plate. It is tempting to conjecture 
that this result is general for any convex body, but it certainly cannot be 
true in general, e.g., for a B-particle with deep dimples. 

5. D I S C U S S I O N  

In the kinetic theory of gases, scattering from a surface (of a B-particle, 
in our case) is often treated as a linear combination of elastic and perfectly 
diffuse scattering. Yet this is for reasons of simplicity rather than physical 
reality. For example, it is reasonable to expect that fast incident particles 
have a higher probability of elastic scattering than slow particles. This 
could be taken into account by weighting the elastic and diffuse kernels w by 
a function of incident velocity, rather than by a constant (Ref. 10, p. 470). 
For example, if we denote the elastic w [Eq. (17)] by we and the diffuse w 
[Eq. (23)1 by wa, we could assume 

w = I1 - P ( g ) ] w e  + P ( g ) w ~  (27) 

where P(g) is some weighting function that goes to zero for large g. Our 
formulas allow the frictional coefficients B and D to be evaluated in this 
case also. 

If  one again assumes the B-particle to be a sphere, then the angular 
integrations indicated in Section 4 are unchanged. The integrals over the 
magnitude of the velocities must, however, be redone, inserting P in the 
integrands. The simple Gaussian nature of the integrals is lost (unless one 
assumes P to be Gaussian, which has in fact been suggested(l~ but this 
is not a serious problem. For example, if one takes P(g)  ,,~ exp(-2,g),  the 
integrals are expressible in terms of Weber functions; alternatively, one can 
resort to numerical methods. 

From the Fokker-Planck equation, one can go to a Smoluchowski 
equation for the B-particle positional distribution function. There are stand- 
ard methods for doing this (see Ref. 2 for an example and references). We 
do not go into this problem here. 

Equations (15) and (16) are the principal results of this paper. They 
show how to handle the problem of the stochastic motion of a heavy particle 
in a medium of light particles for arbitrary scattering law. Aside from the 
mathematical problem of computing the integrals and solving the equation, 
the remaining physical problem is the determination of the requisite scattering 
laws. 
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